6 research outputs found

    Nonlinear Recursive Estimation With Estimability Analysis for Physical and Semiphysical Engine Model Parameters

    No full text
    A methodology for nonlinear recursive parameter estimation with parameter estimability analysis for physical and semiphysical engine models is presented. Orthogonal estimability analysis based on parameter sensitivity is employed with the purpose of evaluating a rank of estimable parameters given multiple sets of observation data that were acquired from a transient engine testing facility. The qualitative information gained from the estimability analysis is then used for estimating the estimable parameters by using two well-known nonlinear adaptive estimation algorithms known as extended Kalman filter (EKF) and unscented Kalman filter (UKF). The findings of this work contribute on understanding the real-world challenges which are involved in the effective implementation of system identification techniques suitable for online nonlinear estimation of parameters with physical interpretation

    Nonlinear recursive estimation with estimability analysis for physical and semiphysical engine model parameters

    No full text
    A methodology for nonlinear recursive parameter estimation with parameter estimability analysis for physical and semi-physical engine models is presented. Orthogonal estimability analysis based on parameter sensitivity is employed with the purpose of evaluating a rank of estimable parameters given multiple sets of observation data that were acquired from a transient engine testing facility. The qualitative information gained from the estimability analysis is then used for estimating the estimable parameters by using two well-known nonlinear adaptive estimation algorithms known as Extended and Unscented Kalman Filters. The findings of this work contribute on understanding the real-world challenges which are involved in the effective implementation of system identification techniques suitable for online nonlinear estimation of parameters with physical interpretation

    Health monitoring system for transmission shafts based on adaptive parameter identification

    No full text
    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable
    corecore